# 线性表方向
# 链表的合并
设计实现将两个带有头节点的有序链表合并为一个新的有序链表。
| void marge(LNode *A,LNode *B,LNode *C){ |
| LNode p = A->next; |
| LNode q = B->next; |
| LNode r; |
| r->next = null; |
| C = A; |
| r=c; |
| while(p != null||q != null){ |
| if(p->data <= q->data){ |
| r->next = p; |
| p = p->next; |
| r = r->next; |
| } else{ |
| r->next = q; |
| q = q->next; |
| r = r->next; |
| } |
| } |
| if(p) r = p; |
| if(q) r = q; |
| } |
# 链表的逆置
| void invert(LinkList &L){ |
| p=L; |
| q=p->next; |
| while(p){ |
| r=q->next; |
| q->next=p; |
| p=q; |
| q=r; |
| } |
| L->next=null; |
| L=p; |
| } |
# 顺序表的逆置
设计一个算法,将顺序表 L 所有的元素逆置,要求算法效率尽可能地高。
| void reverse(Sqlist &L){ |
| ElemType temp; |
| for(int i=0; i<L.length/2; i++){ |
| temp = L[i]; |
| L.data[i]=L.data[L.length-i-1]; |
| L.data[L.length-i-1] = temp; |
| } |
| } |
# 统计单链表 HL 中的值等于 x 的个数
| int countX(LNode *HL, ElemType x){ |
| int countNum = 0; |
| LNode p = HL->next; |
| while(p){ |
| if(p->data == x){ |
| countNum++; |
| } |
| p = p->next; |
| } |
| return countNum; |
| |
| } |
# HL 是单链表的头指针,删除头节点
| ElemType DeleFront(LNode *&HL){ |
| if(HL == null) exit(1); |
| LNode *p = HL; |
| ElemType con = p->data; |
| p->next = p->netx->next; |
| return com; |
| } |
# 判断单链表是否中心对称
- 链表计数
- 动态开辟数组(逻辑栈)
- 奇数个要跳过最中心的那个元素
- 链表向后,栈向下依次检查
- 结束前记得 free 栈
| bool isDC(LinkList *L) { |
| if (L == NULL || L->next == NULL) return true; |
| |
| |
| int count = 0; |
| LinkList *p = L; |
| while (p) { |
| count++; |
| p = p->next; |
| } |
| |
| |
| int *stack = (int *)malloc((count / 2) * sizeof(int)); |
| if (stack == NULL) return false; |
| |
| p = L; |
| int top = -1; |
| for (int i = 0; i < count / 2; i++) { |
| stack[++top] = p->data; |
| p = p->next; |
| } |
| |
| |
| if (count % 2 != 0) p = p->next; |
| |
| |
| while (p) { |
| if (p->data != stack[top--]) { |
| free(stack); |
| return false; |
| } |
| p = p->next; |
| } |
| |
| free(stack); |
| return true; |
| } |
# 判断单链表是否递增
| bool isIncrease(LinkList *l){ |
| LinkList *p = l; |
| int nowData = p->data; |
| p = p->next; |
| while(p){ |
| if(p->data>nowData){ |
| nowData = p->data; |
| p = p->next; |
| }else{ |
| return false; |
| } |
| } |
| return true; |
| } |
# 链表 A,链表 B,求 A 与 B 的交集生成链表 C
| bool isExistence(LinkList *L,Elemtype goData){ |
| if(L==null) return true; |
| LinkList *p = L; |
| while(p){ |
| if(p->data == goData) return false; |
| p=p->next; |
| } |
| return true; |
| } |
| void intersectionAB(LinkList *A,LinkList *B,LinkList *&C){ |
| LinkList *a=A; |
| LinkList *b=B; |
| LinkList *c=C; |
| LinkList go; |
| LinkList *goP=go; |
| |
| |
| while(a){ |
| while(b){ |
| if(a->data==b->data&&isExistence(goP)){ |
| c = (LinkList*)malloc(sizeof(LinkList)); |
| go = (LinkList*)malloc(sizeof(LinkList)); |
| c->data = b->data; |
| c = c->next; |
| goP = goP->next; |
| } |
| b = b->next; |
| } |
| a = a->next; |
| b = B; |
| } |
| } |
# 链式有序归并
| void mergelkList(LinkList *a,LinkList *b,LinkList &*c){ |
| LinkList *p = a; |
| LinkList *q = b; |
| LinkList *temp = (Linklist*)malloc(sizeof(LinkList)); |
| Linklist *r = temp; |
| while(p != NULL && q != NULL){ |
| if(p->data < q->data){ |
| r->next = (Linklist*)malloc(sizeof(LinkList)); |
| r->next->data = p->data; |
| r = r->next; |
| p = p->next; |
| }else{ |
| r->next = (Linklist*)malloc(sizeof(LinkList)); |
| r->next->data = q->data; |
| r = r->next; |
| q = q->next; |
| } |
| } |
| while(p){ |
| r->next = (Linklist*)malloc(sizeof(LinkList)); |
| r->next->data = p->data; |
| r = r->next; |
| p = p->next; |
| } |
| while(q){ |
| r->next = (Linklist*)malloc(sizeof(LinkList)); |
| r->next->data = q->data; |
| r = r->next; |
| q = q->next; |
| } |
| r->next = NULL; |
| c = temp->next; |
| } |
# 串方向
# 在顺序存储结构上实现求子串
# 堆方向
# 已知堆,新加入一个底部元素重新调整成堆
| void adjustheap(int r[],int n){ |
| int j = n; |
| int i = j/2; |
| int temp = r[j-1]; |
| while(i>=1){ |
| if(temp>=r[i-1]){ |
| break; |
| }else{ |
| r[j-1] = r[i-1]; |
| j = i; |
| i = i/2; |
| } |
| } |
| r[j-1] = temp; |
| } |
# 设计单链表中值相同的多余节点
这段代码可能存在内存泄漏的风险,应对考试应该还是没问题的
| void deleteCon(LinkList *&L){ |
| if (!L) return; |
| LinkList *p = L; |
| LinkList *q; |
| LinkList *r; |
| int num = 0; |
| while(p){ |
| num++; |
| p = p->next; |
| } |
| p = L; |
| int* nodeHave = malloc(sizeof(int)*num); |
| int now=1; |
| nodeHave[0]=p->data; |
| q=p; |
| p=p->next; |
| while(p){ |
| bool found = false; |
| for(int i=0;i<now;i++){ |
| if(nodeHave[i] == p->data) { |
| q->next=q->next->next; |
| q=q->next; |
| p=p->next; |
| r=p; |
| free(r); |
| found = true; |
| } |
| } |
| if(!found){ |
| nodeHave[now++]=p->data; |
| p=p->next; |
| q=q->next; |
| } |
| } |
| } |
# 树方向
# 二叉树求树高
| int getDeep(BTree b){ |
| int HL,HR; |
| HL = HR = 0; |
| HL = getDeep(b->Lchild); |
| HR = getDeep(b->Rchild); |
| return HL > HR ? (HL+1) : (HR+1); |
| |
| } |
# 左孩子友兄弟表示法,求原树高
| int hight(BTree b){ |
| int HL,HR; |
| HL = HR = 0; |
| if(b == NULL) return 0; |
| HL = high(b->Lchild); |
| HR = high(b->Rchild); |
| if(HL+1 > HR){ |
| return HL + 1; |
| } else{ |
| return HR; |
| } |
| |
| } |
# 二叉树求树宽
| int count[100]; |
| int max = -1; |
| void width(BTree t,int k){ |
| if(t = NULL) return; |
| count[k] ++; |
| if(max < count[k]) max = count[k]; |
| width(t->lchild, k+1); |
| width(t->rchild, k+1); |
| } |
# 链式存储结构建立二叉树
| typedef char datatype; |
| typedef struct node{ |
| datatype data; |
| struct node *lchild,*rchild; |
| }btree |
| void createBtree(btree *&bt){ |
| datatype zData; |
| scanf("%c",&zData); |
| if(zData == '#') { |
| bt=null; |
| return; |
| } |
| bt = (btree*)malloc(sizeof(btree)) |
| bt->data=zData; |
| createBtree(bt->lchild); |
| createBtree(bt->rchild); |
| } |
# 判断二叉树是否为排序二叉树 / 二叉搜索树
判断一棵二叉树是否为排序二叉树,可以通过中序遍历来实现。在 BST 中,中序遍历的结果应该是一个严格递增的序列。如果遍历过程中发现任何一个节点的值不大于前一个节点的值,则该树不是 BST。
| int minnum = INT_MIN; |
| int isFirstNode = 1; |
| |
| int isBST(BTree *bt){ |
| if(bt==null){ |
| return 1; |
| } |
| if(!isBST(bt->lchild)){ |
| return 0; |
| } |
| if(!isFirstNode && bt->data<minnum){ |
| return 0; |
| } |
| isFirstNode =0; |
| minnum = bt->data; |
| return isBST(bt->rchild); |
| |
| } |
# 求节点在二叉排序树,关键字是 x 的层数
| int layer = 0; |
| void `findXCountLayer(BTree *b,int x){ |
| if(b!=NULL){ |
| layer++; |
| if(b->data == x){ |
| return; |
| }else if(x > b->data){ |
| findXCountLayer(b->rchild,x); |
| }else{ |
| findXCountLayer(b->lchild,x) |
| } |
| } |
| } |
# 统计二叉树节点个数
| int countNode(BTree *b){ |
| if(b == NULL){ |
| return 0; |
| } |
| return countNode(b->lchild) + countNode(b->rchild) + 1; |
| } |
# 计算二叉树中所有节点之和
| int sum = 0; |
| void bTreeSum(BTree *b){ |
| bTreeSum(b->lchild); |
| sum += b->data; |
| bTreeSum(b->rchild); |
| } |
# 排序方向
# 快速排序
# 快速排序分区函数
| int Partition(int a[],int low,int high){ |
| int flag = a[low]; |
| while(low < high){ |
| while(low < high && flag <= a[high]) --high; |
| a[low] = a[high]; |
| while(low < high && flag > a[low]) ++low; |
| a[high] = a[low]; |
| } |
| a[low] = flag; |
| return low; |
| } |
# 快速排序递归函数
| void QuickSort(int a[],int low,int high){ |
| if(low < high){ |
| int pivo = Partition(a,low,high); |
| QuickSort(a,low,pivo-1); |
| QuickSort(apivo+1,high); |
| } |
| } |
# 链式结构的简单选择排序
| void easySelectSort(LinkList *l){ |
| if(l == NULL) return; |
| int min = MAX_INT; |
| int temp; |
| LinkList *p = l; |
| LinkList *r = p; |
| while(p){ |
| min = p->data; |
| LinkList *q = p; |
| while(q){ |
| if(q->data < min){ |
| r=q; |
| min = r->data; |
| } |
| q = q->next; |
| } |
| if (r != p) { |
| temp = r->data; |
| r->data = p->data; |
| p->data = temp; |
| } |
| p = p->next; |
| } |
| } |
# 综合代码题目
# 快速排序分区函数 + 顺序表移动
设计一个算法,调整数组 a [] 中的元素并返回分界值,使所有小于 x 的元素都出现在其左边(a [1…i]),所有大于 x 的元素都出现在其右边(a [i+1…n])。
不严谨的代码 | int div(int a[],intx){ |
| int rear = a.length; |
| a[rear] = x; |
| int start = 0; |
| while(start < rear){ |
| while(start<rear && x>=a[start]) rear--; |
| a[rear] = a[start]; |
| while(start<rear && x<a[rear]) start++; |
| a[strat] = a[rear]; |
| } |
| int i = start; |
| for(int j=i; j>0; j--){ |
| a[i]=a[i-1]; |
| } |
| return i; |
| } |
实际上,上述代码有一些不严谨的部分,比如,可能造成数组越界。
但仍然可以帮助我们拿下绝大部分的分数。
相同逻辑更严谨的代码 | int div(int a[],int h,int x){ |
| int i,j,t; |
| i = 1; |
| j = h; |
| while(i<j){ |
| |
| while(i<j && a[j]>=x) j--; |
| |
| while(i<j && a[i]<=x) i++; |
| if(i<j){ |
| |
| t = a[i]; |
| a[i] = a[j]; |
| a[j] = t; |
| } |
| } |
| |
| |
| |
| if(a[i]<x) return i; |
| else return i-1; |
| } |
上述代码体现就是一种类似 “就地算法” 的思想,无需借助辅助空间。
找到第一个大于 x 与小于 x 的数,直接原地交换位置,然后继续寻找。
# 将奇数转移到偶数之前
| void quickPass(int r[],int s,int t){ |
| int i = s; |
| int j = t; |
| int x = r[s]; |
| while(i < j){ |
| while(i < j && r[j]%2 == 1){ |
| j--; |
| } |
| if(i < j){ |
| r[i] = r[j]; |
| i++; |
| } |
| while(i < j && r[i]%2 == 0){ |
| i++; |
| } |
| if(i < j){ |
| r[j] = r[i]; |
| j++; |
| } |
| } |
| r[i] = x; |
| } |
# S 是栈,Q 是队列,将队列中的元素逆置
| void Inverser(Stack &S,Queue &Q){ |
| int x; |
| while(!QueueEmpty(Q)){ |
| x = DeQueue(Q); |
| Push(S,x); |
| } |
| while(!StackEmpty(S)){ |
| Pop(S,x); |
| EnQueue(Q,x); |
| } |
| } |